

- Nonzero integers always count as significant figures
	- -3456 has 4 sig figs.
- Leading zeros are never significant
	- -0.000757 has 3 sig figs

 $-\sqrt{ay} = 2x/\epsilon$ m/s

 $-a_{avg} = \frac{dV}{dt} m/s^2$

 $-a_{\text{inst}} = \frac{dv}{dt}$ m/s²

 $-v_{insf} = \frac{dx}{dt}$ m/s |v|

gravitational accleration
g=19.81m/s²

 \cdot Displacement = Δx = x_f - x_i

-Linear Motion

- Captive zeros always count assignificant figures -16.07 has 4 sig figs
	- Trailing zeros are significant only if the number contains a decimal point. 9.300 has 4 sig figs

ADDITION

 $123.1 + 23 = 146$ 1 d.p. 0 d.p. 0 d.p. **SUBTRACTION**

 5.4

2 s.f.

 $123.1 - 23 = 100.$ 1 d.p. 0 d.p. 0 d.p.

$$
1. \quad v=v_0+at
$$

$$
2. \quad \Delta x = (\frac{v+v_0}{2}) t
$$

$$
3. \quad \Delta x = v_0 t + \frac{1}{2} a t^2
$$

4. $v^2 = v_0^2 + 2a\Delta x$

- Verfors

· Vector has direction and magnitude

 $W_F = F F d$ $\mathcal{E}_i - W_f$ riction = \mathcal{E}_f Depends on situation Conservative Forces: Hny path that begins & ends ω the same place will require zero total work Potential Energy Liavational PE mgh Thy force that begins & ends @ the same place will require zero total
Clastic Force: F=-kx work $-$ Elostic/Spring PE = $\frac{1}{2}kx^2$ - Momentum & Impulse Momentum Impulse \overline{p} = m \overline{v}
 \overline{p} = m \overline{v}
 \overline{p} = m \overline{v} (Kgm/s)
 \overline{p} = F(t) dt
 \overline{p} = F(t) dt $T = F t$ (w_s) $\{P_i = \{P_i \}$ (Conservation of Momentum) Types Centerof Mass · <u>E</u>lastic : No energy loss Totally inelastic Energy loss (stick together) 8 md/
Explosion (sticktogether) 5 md/#m \mathcal{E}_{X} plosion metals of \mathcal{E}_{X} Equations Elastic: m_1V_{10} + m_2V_{20} = $m_1V_{1}f$ + $m_2V_{2}f$ $Inelastic: m_1v_{10} + m_2v_{20} = (m_1 + m_2)v_f$ $Explosion = O = (m_1v_{1f} + m_2v_{2f})$. Basically like last weeks 1D momentum problems, but this time you have to split it into the x and y direction to solve your problems o It is the same thought process as when we did projectile motion in terms of splitting $Collisions$ $&\mathcal{C}onsetraction$ $Laws$: the problem into the x and y components . Technically you don't have to split the problem up like that, but it definitely makes your life 10x easier and it is easier to understand . You will see the splitting in the HW Gravity
 $T^2 \sim r^3$ Fg = Gm_1m_2/r^2

First Law

Einst Law

First Law

Each planet moves in an elliptical orbit with it's star (Sun) 1st Law $m = p \frac{11}{3} \pi r^3$ $p_E = -Gm_1m_2/r$ at one focus 2nd Law Ellipse 9 on planets = $\mathcal{L}m/r$ ² Second Law (law of equal areas): an orbiting object will take the same amount of time to travel between points A & B as it takes to travel between points C & D a Constant = 6.67430 ε -11 Equal area in the same time $e \cdot 6.371$ Ebw
L. 5972524 3rd Law Third Law area $S1$ = area $S2$ Me = 5.972E24 kg (law of harmonics): The square P: period (the time for one cycle) of a planet's orbital time is M: length of the major axis M proportional to its average distance from the star (Sun) P²/M³ is the same for all planets cubed.